Skip to contents

Interpolate adjusted estimates of flooded area from estimate_flood_extent() to cover specific dates, facilitating a sum across multiple units.

Usage

interpolate_flooding(df, interval = "week", wateryear, sum = FALSE)

Arguments

df

Input tibble from estimate_flood_extent()

interval

one of "day", "week", "month", "quarter" or "year"; see seq.Date()

wateryear

numeric; water years to interpolate over

sum

Logical; if TRUE, summarize by date across all units

Value

tibble with fields: date, year, month, wateryear, AreaWater_ha, and AreaWater_ac

Details

For each unit, this function interpolates values of ObservedAreaWater_adjust generated form estimate_flood_extent() across a desired water years. For each water year, the sequence of dates to interpolate is first generated from Oct 1 through Sep 30 at the desired interval. For intervals of weeks or days in leap years, leap day is intentionally skipped in the sequence of dates, facilitating comparisons across multiple years on common dates.

Values are then interpreted using zoo::na.spline(), and any values less than zero are changed to zero. Optionally, if sum = TRUE, summarizes across all units for each unique date to return the total area flooded.

Examples

df = format_watertracker(sampledat) |> estimate_flood_extent()
interpolate_flooding(df, wateryear = c(2015, 2016))
#> # A tibble: 1,802 × 7
#>    wateryear  year month date       interval AreaWater_ha AreaWater_ac
#>        <dbl> <dbl> <dbl> <date>        <int>        <dbl>        <dbl>
#>  1      2015  2014    10 2014-10-01        1         2.95         7.30
#>  2      2015  2014    10 2014-10-08        2         5.39        13.3 
#>  3      2015  2014    10 2014-10-15        3         7.28        18.0 
#>  4      2015  2014    10 2014-10-22        4         6.95        17.2 
#>  5      2015  2014    10 2014-10-29        5         4.19        10.4 
#>  6      2015  2014    11 2014-11-05        6         2.80         6.91
#>  7      2015  2014    11 2014-11-12        7         6.30        15.6 
#>  8      2015  2014    11 2014-11-19        8        12.6         31.1 
#>  9      2015  2014    11 2014-11-26        9        17.5         43.2 
#> 10      2015  2014    12 2014-12-03       10        19.1         47.1 
#> # ℹ 1,792 more rows